PDF下載 分享
[1]金智,丁芃,蘇永波,等.太赫茲固態電子器件和電路[J].空間電子技術,2013,(4):48-55.[doi:10.3969/j.issn.1674-7135.2013.04.012]
 JIN Zhi,DING Peng,SU Yong-bo,et al.Solid State Terahertz Devices and Circuits Applied in Space Technology[J].Space Electronic technology,2013,(4):48-55.[doi:10.3969/j.issn.1674-7135.2013.04.012]
點擊復制

太赫茲固態電子器件和電路

參考文獻/References:

[1] Stegel P H. Terahertz Technology [J]. IEEE Transactions on Microwave Theory and Techniques,2002, 50:910
[2] 劉豐, 朱忠博, 崔萬照. 空間太赫茲信息技術展望[J]. 微波學報, 2013, 29(2):1-6
[3] 姚建銓,鐘凱,徐德剛. 太赫茲空間應用研究與展望[J]. 空間電子技術, 2013, 2:1-16
[4] Ida M, Kurishima K, Watanabe N. Over 300 GHz fT and fmax InP/InGaAs Double Heterojunction Bipolar Transistors With a Thin Pseudomorphic Base [J]. IEEE Electron Device Letters,2002,23(12):694-696
[5] Griffith Z, Lind E, Rodwell M J W, et al. 60nm collector InGaAs/InP Type-I DHBTs demonstrating 660 GHz fT, BVCEO=2.5 V, and BVCBO = 2.7 V [C]. Proc. Compound Semiconductor Integrated Circuits (CSIC), 2006, 275-278
[6] Matine N, Dvorak M W, Xu X G, et al. InP/GaAsSb/InP Double Heterojunction Bipolar Transistors with High Cut-off Frequencies and Breakdown Voltages [C]. Proc. Indium Phosphide and Related Materials (IPRM), 1999, 179-182
[7] Snodgrass W, Hafez W, Harff N, et al. Pseudomorphic InP/InGaAs Heterojunction Bipolar Transistors (PHBTs) Experimentally Demonstrating fT = 765 GHz at 25°C Increasing to fT = 845 GHz at -55°C [C]. International Electron Devices Meeting (IEDM), 2006, 1-4
[8] Jain V, Rode J C, Chiang H W, et al. 1.0 THz/max InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance[C]. Proc. Device Research Conference (DRC), 2011, 69th Annual, 271-272
[9] Urteaga M, Pierson R, Rowell P, et al. 1.0 THz/max InP DHBTs in a refractory emitter and self-aligned base process for reduced base access resistance [C]. Proc. Device Research Conference (DRC), 2011, 271-272
[10] Lai R, Mei X B, Deal W R, et al. Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz [C]. International Electron Devices Meeting, 2007, 609-611
[11] Wakita A S, Su C Y, Rohdin H, et al. Novel high yield trilayer resist process for 0.1 μm T gate fabrication [J]. J. Vac. Sci. Technol.B, 1995, 13(6):2725-2728
[12] Shinohara K, Chen P S, Bergman J, et al. Ultra-high-speed low-noise InP-HEMT technology [C]. IEEE MTT-S International Microwave Symposium Digest, 2006, 337-340
[13] Kim D H and del Alamo J A. 30-nm InAs PHEMTs With fT= 644 GHz and fmax = 681 GHz [J]. IEEE Electron Device Letters, 2010, 31(8):806-808
[14] Yeon S, Park M, Choi J, et al. 610 GHz InAlAs/In0.75GaAs Metamorphic HEMTs with an Ultra-Short 15-nm-Gate [C]. International Electron Devices Meeting, 2007, 613-616
[15] Suemitsu T, Yokoyama H, Ishii T, et al. 30 nm two-step recess gate InP-based InAlAs/InGaAs HEMTs [J]. IEEE Trans. Electron Devices, 2002, 49(10):1694-1700
[16] Kim D H, del Alamo J A. Lateral and Vertical Scaling of In0.7Ga0.3As HEMTs for Post-Si-CMOS Logic Applications [J]. Journals & Magazines, 2008, 55(10):2546-2553
[17] Kim D H, Brar B and del Alamo J A. fT = 688 GHz and fmax = 800 GHz in Lg = 40 nm In0.7Ga0.3As MHEMTs with gm_max> 2.7 mS/μm [C]. International Electron Devices Meeting, 2011, 319-321
[18] Kim T W, Kim D H, del Alamo J A. InGaAs HEMT with InAs-rich InAlAs barrier spacer for reduced source resistance [J]. Electronics Letters, 2011, 47(6):406-407
[19] Kim T W, Kim D H, del Alamo J A. 60 nm Self-Aligned-Gate InGaAs HEMTswith Record High-Frequency Characteristics [C]. International Electron Devices Meeting, 2010, 696-699
[20] Zhong H Y, Wang X T, Su Y B, et al. Sub 100 nm In0.53Ga0.47As/In0.52Al0.48As InP-based HEMT with fT=204 GHz, fmax=352 GHz, and gm,max=918 mS/mm [C]. 2011, IEEE Radio-Frequency Integration Technology (RFIT), 213-216
[21] Radisic V, Mei X B, Deal W R, et al. Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology [J]. IEEE Microwave and Wireless Components Letters, 2007, 17:223-225
[22] Radisic V, Samoska L, Deal W R, et al. A 330-GHz MMIC oscillator module [C]. IEEE MTT-S International Microwave Symposium Digest, 2008, 395-398
[23] Radisic V, Sawdai D, Scott D, et al. Demonstration of Sub-Millimeter Wave Fundamental Oscillators Using 35-nm InP HEMT Technology [J]. IEEE Trans. Microwave Theory and Techniques, 2007, 55:2329-2335
[24] Seo M, Urteaga M, Hacker J, et al. InP HBT IC Technology for Terahertz Frequencies: Fundamental Oscillators Up to 0.57 THz [J]. IEEE J. Solid-State Circuits, 2011, 46(10): 2203-2214
[25] Seo M, Urteaga M, Rodwell M, et al. A 300 GHz PLL in an InP HBT technology [C]. IEEE MTT-S International Microwave Symposium Digest, 2011, 5-10.
[26] Deal W R, Mei X B, Radisic V, et al. Development of Sub-Millimeter-Wave Power Amplifiers IEEE Trans [J]. Microwave Theory and Techniques,2007, 55(12): 2719-2726

[27] Hacker J, Urteaga M, Mensa D, et al. 250 nm InP DHBT monolithic amplifiers with 4.8 dB gain at 324 GHz [C]. IEEE MTT-S International Microwave Symposium Digest, 2008, 403-406

[28] Radisic V, Leong M K H, Mei X, et al. A 50 mW 220 GHz power amplifier module [C]. IEEE MTT-S International Microwave Symposium Digest, 2010, 45-48.
[29] Radisic V, Deal W R, Leong M K H, et al. A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module [J]. IEEE Trans. Microwave Theory and Techniques, 2010, 58(7): 1903-1907
[30] Urteaga M, Seo M, Hacker J, et al. InP HBT Integrated Circuit Technology for Terahertz Frequencies [C]. Compound Semiconductor Integrated Circuit Symposium (CSICS), 2010, 1-4
[31] Deal W R, Mei X B, Radisic V, et al. Demonstration of a 0.48 THz Amplifier Module Using InP HEMT Transistors [J]. IEEE Microwave and Wireless Components Letters, 2010, 20(5):289-291 [32] Deal W R, Leong M K H, Mei X, et al. Scaling of InP HEMT cascade integrated circuits to THz frequencies [C]. Compound Semiconductor Integrated Circuit Symposium (CSICS), 2010, 1-4
[33] Deal W R, Leong M K H, Mei X, et al. 2.5-THz GaAs Monolithic Membrane-Diode Mixer [J]. IEEE Microwave and Wireless Components Letters, 2011, 21(7):368-370
[34] Frink S, DARPA creates solid state receiver that operates at 0.85 terahertz. http://www.militaryaerospace.com/articles/2012/08/darpa-creates-solid.html, August 4, 2012
[35] Zimmermann R, Zimmermann R, Zimmermann P. All Solid-State Radiometers for Environmental Studies to 700 GHz [C]. 3rd International Symposium On Space THz Technology, 1992, 706-723
[36] Martin S, Nakamura B, Fung A, et al. Fabrication of 200 GHz to 2700 GHz multipliers devices using GaAs and metal membranes [J]. Proceedings of the IEEE MTT-S, 2001:1641-1644
[37] Bishop W L, Meiburg E R, Mattauch R J, et al. A micron-thickness,planar Schottky diode chip for terahertz applications with theoretical minimum parasitic capacitance [C]. IEEE MTT-S Digest, 1990, 1305-1308.
[38] Erickson N R, Smith R P, Martin S C, et al.High efficiency MMIC frequency triplers for millimeter and submillimeter wavelengths [C]. Proceedings of IEEE MTT-S Digest, 2000, 2:1003 -1006
[39] Maiwald F, Martin S, Bruston J, et al.A 2.7 THz waveguide tripler using monolithic membrane diodes [C]. Proceedings of IEEE MTT-S Digest, 2001, 3: 1637-1640
[40] Maestrini A. Performance of a 1. 2 THz frequency tripler using a CaAs frameless membrane monolithic circuit [C]. Proceedings of IEEE MTT-S Digest, 2001, 3: 1657-1660
[41] Chattopadhyay G, Schlecht E, Ward J S, et al. An all solid-state broad-band frequency multiplier chain at 1500 GHz [J]. IEEE Trans Microw Theory Tech, 2004, 52(5):1538 -1547
[42] Maestrini A, Ward J S, Gill J, et al.A 1.7 to1.9 THz local oscillator source [J]. IEEE Microw Compon Lett, 2004,14(6):253-255
[43] Ward J S, Gill J, et al.Tunable broadband frequency-multiplied Terahertz sources [C]. Proceedings of IEEE IRMMW-THz Digest, 2008, 1-3
[44] Lee C, Ward J, Lin R, et al.A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multiplies [C]. Proceedings of IEEE MTT-Sdigest, 2009, 957-960
[45] Chattopadhyay G. Technology capabilities,andperformance of low power Teraherz sources [J]. IEEE Trans Terahertz Science and Technology, 2011, 1(1): 33-35
[46] Thomas B, Maestrini A, Beaudin G. A low-noise fixed-tuned 300-360 GHz sub-harmonic mixer using planar Schottky diodes [J]. IEEE Microwave and Wireless Components Letters, 2005, 15(12):865-867 [47] Mash S, Alderman B, de Maagt P. Design of low-cost 183 GHz subharmonic mixers for commercial applications [J]. IET Circuits Devices System, 2007, 1(1):1-6 [48] Ederra I, Azcona L, Alderman B, et al. A 250 GHz Subharmonic Mixer Design Using EBG Technology [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11):2974-2982 [49] Thomas B, Alderman B, Matheson D, et al. A Combined 380 GHz Mixer/Doubler Circuit Based on Planar Schottky Diodes [J]. IEEE Microwave and Wireless Components Letters, 2008, 18(5):353-355 [50] Wang H, Alderman B. Development of a Two-Pixel Integrated Heterodyne Schottky Diode Receiver at 183GHz [C]. 19th International Symposium on Space Terahertz Technology, 2008, 490-493 [51] Thomas B, Maestrini A, Gill J, Lee C, et al. A Broadband 835-900 GHz Fundamental Balanced Mixer Based on Monolithic GaAs MembraneSchottky Diodes [J]. IEEE Trans. Microwave Theory and Technologies, 2010, 58(7):1917-1924 [52] Wilkinson P, Alderman B. A 664GHz Sub-Harmonic Schottky Mixer [C]. 21st International Symposium on Space Terahertz Technology, 2010, 413-415

相似文獻/References:

[1]劉豐,劉江凡,宮晨蓉,等.太赫茲波在等離子鞘套中的傳播[J].空間電子技術,2013,(4):10.[doi:10.3969/j.issn.1674-7135.2013.04.003]
 LIU Feng,LIU Jiang-fan,GONG Chen-rong,et al.Transmission of Terahertz Waves in Plasma Sheath[J].Space Electronic technology,2013,(4):10.[doi:10.3969/j.issn.1674-7135.2013.04.003]
[2]朱忠博,崔萬照,劉豐,等.太赫茲反隱形觀測技術發展現狀及研究必要性[J].空間電子技術,2013,(4):21.[doi:10.3969/j.issn.1674-7135.2013.04.006]
 ZHU Zhong-Bo,CUI Wan-zhao,LIU Feng,et al.Technology needs for THz Anti-stealth Detection and Its Development[J].Space Electronic technology,2013,(4):21.[doi:10.3969/j.issn.1674-7135.2013.04.006]
[3]楊琪,鄧彬,蔣彥雯,等.基于調頻連續波的太赫茲頻段轉臺成像方法研究[J].空間電子技術,2013,(4):25.[doi:10.3969/j.issn.1674-7135.2013.04.007]
 YANG Qi,DENG Bin,JIANG Yan-wen,et al.Study of Terahertz Rotating Platform Imaging Algorithm Based on FMCW[J].Space Electronic technology,2013,(4):25.[doi:10.3969/j.issn.1674-7135.2013.04.007]
[4]胡銀富,馮進軍,潘攀,等.220GHz行波管設計與工藝試驗研究[J].空間電子技術,2013,(4):36.[doi:10.3969/j.issn.1674-7135.2013.04.009]
 HU Yin-Fu,FENG Jin-Jun,PAN Pan,et al.Design and Technical Experiment Study of 220GHz TWT[J].Space Electronic technology,2013,(4):36.[doi:10.3969/j.issn.1674-7135.2013.04.009]
[5]高夢超,馮進軍.220GHz返波振蕩器高頻特性及互作用研究[J].空間電子技術,2013,(4):40.[doi:10.3969/j.issn.1674-7135.2013.04.010]
 GAO Meng-chao,FENG Jin-jun.Investigation on High Frequency Characteristics and Beam-wave Interaction of 220GHz Backward Wave Oscillator[J].Space Electronic technology,2013,(4):40.[doi:10.3969/j.issn.1674-7135.2013.04.010]
[6]王石龍,孟繁義,吳群.基于石墨烯的太赫茲可重構極化扭轉器研究[J].空間電子技術,2013,(4):68.[doi:10.3969/j.issn.1674-7135.2013.04.016]
 WANG Shi-Long,MENG Fan-Yi,WU Qun.Reconfigurable Terahertz Polarization Converter Based on Graphene[J].Space Electronic technology,2013,(4):68.[doi:10.3969/j.issn.1674-7135.2013.04.016]
[7]邊明明,王世濤,雷利華,等.太赫茲技術及空間應用國內外發展現狀研究[J].空間電子技術,2013,(4):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
 BIAN Ming-ming,WANG Shi-tao,LEI Li-hua,et al.Study of the Domestic and Abroad Development Status of THz Technology and its Space Application[J].Space Electronic technology,2013,(4):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
[8]梁達川,谷建強,韓家廣,等.寬頻太赫茲時域雷達系統[J].空間電子技術,2013,(4):99.[doi:10.3969/j.issn.1674-7135.2013.04.023]
 LIANG Da-chuan,GU Jian-qiang,HAN Jia-guang,et al.Terahertz Time-domain Radar System[J].Space Electronic technology,2013,(4):99.[doi:10.3969/j.issn.1674-7135.2013.04.023]
[9]黃欣,武亞君,王曉冰,等.太赫茲目標雷達散射截面測量技術[J].空間電子技術,2013,(4):104.[doi:10.3969/j.issn.1674-7135.2013.04.024]
 HUANG Xin,WU Ya-jun,WANG Xiao-bing,et al.Terahertz Radar Cross Section Measurement Technique[J].Space Electronic technology,2013,(4):104.[doi:10.3969/j.issn.1674-7135.2013.04.024]
[10]梁美彥,趙然,張存林.220GHZ頻率步進雷達測距的實驗研究[J].空間電子技術,2013,(4):110.[doi:10.3969/j.issn.1674-7135.2013.04.025]
 LIANG Mei-yan,ZHAO Ran,ZHANG Cun-lin.Research on 220GHz Stepped Frequency Radar for Ranging[J].Space Electronic technology,2013,(4):110.[doi:10.3969/j.issn.1674-7135.2013.04.025]

備注/Memo

金 智 1970年生,博士,研究員,博士生導師,中科院百人計劃學者,微波器件與集成電路研究室主任,《半導體學報》編委。研究方向為太赫茲固態電子器件與電路、InP基毫米波器件與電路及石墨烯器件與電路。發表文章100多篇。

更新日期/Last Update: 2013-12-25
草莓视频下载app-草莓视频黄-草莓app下载安装污无限次数观看