YAO Jian-quan,ZHONG Kai,XU De-gang.Study and Outlook of Terahertz Space Applications[J].Space Electronic technology,2013,(2):1-16.[doi:10.3969/j.issn.1674-7135.2013.02.001]
太赫茲空間應用研究與展望
- Title:
- Study and Outlook of Terahertz Space Applications
- Keywords:
- Terahertz (THz); Space application; Radar; Communication; Remote sensing; Imaging; Non-destructive testing
- 摘要:
- 近年來,我國在空間技術領域取得了舉世矚目的成就,多項技術已經達到國際先進甚至領先水平。要保持我國在空間領域的優勢地位,必須加強適用于空間技術及應用的新方法、新手段。太赫茲(THz)技術為空間技術的發展提供了新的途徑,因此,對THz波空間應用技術進行研究非常必要。本文介紹了THz波的性質及特點,綜述了THz技術在雷達、通信、遙感及航天工業等方面的應用,并對THz波在空間應用領域進行了展望,希望能夠促進THz技術在該領域的研究及應用技術的進步。
- Abstract:
- Our country has achieved great progress in space technologies in recent years, with many areas reaching the world advanced even world leading level. New measuring methods and tools for space applications are needed to keep our leading position. The development of terahertz (THz) technology provides us a new approach, and therefore, the research on space uses of terahertz wave is of great importance. In this paper, we introduce the properties of THz wave, review the applications of THz in the areas of radar, communication, remote sensing and space industry, and give an outlook of THz in space applications. We hope it can accelerate the progress of THz technologies in space areas.
參考文獻/References:
[1] P. H. Siegel, Terahertz Technology, IEEE Transactions on Microwave Theory and Techniques, 50, 910(2002).
[2] F. Bradley, X. Ch. Zhang, Materials for terahertz science and technology, Physics, 32, 287(2003).
[3] A. G. MKELZ, A. Roitberg and E. J. Heilweil, Chemical Physics Letters, 2000, 320: 42~48
[4] Q. Chen, Z. P. Jiang, X. C. Zhang, The interaction between terahertz radiation and biological tissue, Pro. SPIE, 1999, 3616: 98~105
[5] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond photoconducting dipole antennas, IEEE Journal of quantum electronics, 1988, 24: 255~260
[6] 謝旭,鐘華,袁韜等,使用太赫茲技術研究航天飛機失事的原因,物理,2003,32(9):583~584
[7] 王少宏,許景周,汪力等,物理,2001,30(10):612~615
[8] 馬曉菁,代斌,葛敏,太赫茲輻射的研究及應用,化工時刊,2006,20(12):50~53
[9] 鄭新,劉超,太赫茲技術的發展及在雷達和通信系統中的應用(I),微波學報,2010,26(6):1-6
[10] 李晉,太赫茲雷達系統總體與信號處理方法研究,電子科技大學博士學位論文,2010
[11] C. J. Higginsb, N. A. Salmona, Passive Millimetre Wave Imaging for Ballistic Missile Launch Detection, Millimetre Wave and Terahertz Sensors and Technology, Cardiff, Wales, Sep. 2008
[12] R. W. McMillan, C. W. Trussell, R. A. Bohlander, et al, An experimental 225 GHz pulsed coherent radar, IEEE Trans. Microwave Theory Techn. 1991, 39: 555-562
[13] Goyette T M, Dickinson J C, Waldman J, et al. Fully polarimetric W-band ISAR imagery of scale-model tactical targets using a 1. 56-THz compact range . Proc. of SPIE, 2001, 4382: 229-240.
[14] R. J. Dengler, F.Maiwald, and P. H. Siegel, A Compact 600 GHz Electronically Tunable Vector Measurement System For Submillimeter Wave Imaging, IEEE MTT-S Int. Digest, San pp:1923–1926, Francisco, Jun. 2006.
[15] R. J. Dengler, K. B. Cooper, G. Chattopadhyay, I. Mehdi, E. Schlecht, A. Skalare, C. Chen, and P. H. Siegel, 600 Ghz Imaging Radar With 2cm Range Resolution, IEEE MTT-S Int. Digest, Honolulu, pp:1371–1374, Jun. 2007.
[16] K. B. Cooper, R. J. Dengler, G. Chattopadhyay, E. Schlecht, J. Gill, A. Skalare, I. Mehdi, and P. H. Siegel, A High-Resolution Imaging Radar at 580 GHz, IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, pp:64-66, Jan. 2008.
[17] C. A. Weg, W. V. Spiegela, R. Hennebergerb, Fast Active Thz Camera With Range Detection By Frequency Modulation, Terahertz Technology and Applications II, Proceeding of SPIE, Vol. 7215, Orlando, 2009.
[18] C. A. Weg, W. V. Spiegel, R. Henneberger, et al, Fast Active THz Cameras with Ranging Capabilities, Journal of Infrared Millimeter and Terahertz Waves, Vol. 30, No. 8, pp:1281-1296, 2009
[19] 姚建銓,遲楠,楊鵬飛等,太赫茲通信技術的研究與展望,中國激光,2009,36(9):2213-2233
[20] 吳竹,太赫茲波通信系統仿真技術研究,浙江大學碩士學位論文,2010
[21] A. Hirata, T. Kosugi, H. Takahashi et al, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transimission, IEEE trans. Microwave Theory Techn., 2006, 54: 1937-1944.
[22] T. Nagatsuma, A. Hirata, 10Gbit/s wireless link technology using the 120GHz band. NTT Technical Review, 2004: 58-62.
[23] T. Kosugi, M. Tokumitsu, T. Enoki et al, 120-GHz Tx/Rx chipset for 10-Gbit/s wireless applications using 0.1-μm-gage InP HEMTs, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004, 171-174.
[24] R. Yamaguchi, A. Hirata, T. Kosugi et al, 10-Gbit/s MMIC wireless link exceeding 800 meters, IEEE Radio and Wireless Symposium, 2008, 695-698.
[25] A. Hirata, M. Harada, T. Nagatsuma, 120-GHz wireless link using photonic techniques for generation, modulation and emission of millimeter-wave signals, J. Lightwave Techn., 2003, 21: 2145-2153
[26] A. Hirata, T. Kosugi, N. Meisl et al, High-directivity photonic emitter using photodiode module integrated with HEMT amplifier for 10-Gbit/s wireless link, IEEE trans. Microwave Theory Techn., 2004, 52: 1843-1850.
[27] T. Nagatsuma, Exploring sub-terahertz waves for future wireless communications, IEEE IRMMW-THz 2006, Joint 31st International Conference. 4.
[28] F. Nakajima, T. Furuta, H. Ito. High power terahertz wave generation using a resonant antenna integrated uni-travelling-carrier photodiode, Nippon Telegraph and Telephone Corporation, 2006, 40: 1297-1298.
[29] T. Nagatsuma, A. Hirata, R. Yamaguchi et al, Sub-terahertz wireless communications technologies, IEEE ICECom 2005, 18th International Conference. 1-4.
[30] Nagatsuma, T., Song, H. J., Fujimoto, Y., Miyake, K., Hirata, A., Ajito, K., ... & Kado, Y. (2009, October). Giga-bit wireless link using 300–400 GHz bands. In Microwave Photonics, 2009. MWP'09. International Topical Meeting on (pp. 1-4). IEEE.
[31] Song, H. J., Ajito, K., Wakatsuki, A., Muramoto, Y., Kukutsu, N., Kado, Y., & Nagatsuma, T. (2010, October). Terahertz wireless communication link at 300 GHz. In Microwave Photonics (MWP), 2010 IEEE Topical Meeting on (pp. 42-45). IEEE.
[32] R. Piesiewicz, M. Jacob, M. Koch et al, Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE J. Sel. Top. Quantum Electron., 2008, 14: 421-430.
[33] M. Koch, Terahertz frequency detection and identification of materials and objects, Terahertz Communications: A 2020 vision. 2007, 325-338.
[34] T. Kleine-Ostmann, K. Pierz, G. Hein et al, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett., 2004, 40: 124-126.
[35] T. Kleine-Ostmann, P. Dawson, K. Pierz et al, Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett., 84: 3555-3557.
[36] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz et al, Concept and perspectives of future ultra broadband THz communication systems, IEEE, 2006, 1-4244-0400-2/06: 96.
[37] N. Krumbholz, K. Gerlach, F. Rutz et al, Omnidirectional terahertz mirrors: A key element for future terahertz communication systems, Appl. Phys. Lett., 2006, 88: 202905-1-3.
[38] T. Kurner, R. Piesiewicz, M. Koch et al, Propagation models, measurements and simulations for wireless communication systems beyond 100 GHz. IEEE, 2007, 1-4244-0767-2/07: 108-111
[39] R. Piesiewicz, M. Jocob, J. Schoebel et al, Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions, EuMA, 2007, 978-87487-001-9: 1606-1609.
[40] R. Piesiewicz, C. Jansen, D. Mittleman et al, Scattering analysis for the modeling of THz communication systems, IEEE trans. Antennas and Propagation, 2007, 55: 3002-3009
[41] C. Jastrow, K. Munter, R. Piesiewicz et al, 300 GHz transmission system. Electron. Lett., 2008, 44: 213-214.
[42] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters, 2008, 18: 67-69.
[43] I. A. Ibraheem, N. Krumbholz, D. Mittleman et al, Low-dispersive dielectric reflectors for future wireless terahertz communication systems. IEEE Microwave and Wireless Components Letters, 2008, 978-1-4244-1438-3: 930-931.
[44] M. Koch, Terahertz applications and techniques. OSA, 2006, 1-55752-830-6.
[45] C. Jansen, R. Piesiewicz, D. Mittleman et al, The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems. IEEE trans. Antennas Propagation, 2008, 55(5): 1413-1419.
[46] Chen, Z., Tan, Z. Y., Han, Y. J. et al, Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector. Electronics letters, 2011, 47(17), 1002-1004.
[47] 陳鎮, 譚智勇, 王長,曹俊誠. 基于 THz QCL 和 THz QWP 的數字通信演示系統. 第十屆全國光電技術學術交流會論文集, 2012.
[48] http://www.iaeej.com/config/newsfiles/2012-02-0811/e4和雷達技術研究取得重要突破-修改.doc
[49] 周勝利,張存林,太赫茲遙感技術綜述,航天返回與遙感,2009,30:32-35
[50] 戴寧,葛進,胡淑紅,張雷,太赫茲探測技術在遙感應用中的研究進展,中國電子科學研究院學報,2009,3:231-237
[51] 岳楨干,太赫茲波遙感技術簡介,紅外,2011,32(6):47-48
[52] 林栩凌,阮寧娟,周峰,太赫茲技術空間應用研究探討,航天返回與遙感,2012,33(1):75-80
[53] 李宇曄, 王新柯, 張平, 等. 模擬沙塵暴條件下的太赫茲輻射傳輸研究. 激光和紅外, 2008, 38( 9): 921-924.
[54] T. Corti, B.P. Luo, Q. Fu, et al. The Impact of Cirrus Clouds on the Tropical Troposphere-to-stratosphere Transport. Atmos. Chem. Phys., 2006(6): 2539-2547.
[55] C. Emde, S. A. Buehler, P. Eriksson et al, The Effect of Cirrus Clouds on Microwave Limb Radiances. Atmospheric Research, 2004, 72(1-4): 383-401.
[56] J. W. Waters, Submillimeter-wave length Heterodyne Spectroscopy and Remote Sensing of the Upper Atmosphere. Proceedings of the IEEE, 1992, 80(11): 1679-1701.
[57] From Spitzer to Herschel and Beyond: The Future of Far-Infrared Space Astrophysics [EB/OL]. http://safir.jp.lnasa.gov/Beyond Spitzer Conf/conf Proceedings. shtml2004.
[58] J. W. Waters, W. G. Read, L. Froidevaux et al, The UARS and EOS Microwave Limb Sounder(MLS) Experiments. Journal of the Atmospheric Science, 1999, 56(2): 194-218.
[59] S. Gulkis, M. Frerking, J. Crovisier, et al, MIRO: Microwave Instrument for Rosetta Orbiter. Space Science Reviews, 2007, 128 (1-4) : 561-597.
[60] V. P. Koshelets, S. V. Shitov, A. B. Ermakov et al, Superconducting Integrated Receiver for TELIS. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 960-963.
[61] 沈京玲,張存林,太赫茲波無損檢測新技術及其應用,無損檢測,2005,27(3):146-147
[62] 周燕,連續太赫茲波成像技術的檢測應用研究,首都師范大學碩士學位論文,2007
[63] 張雯,雷銀照,太赫茲無損檢測的進展,儀器儀表學報,2008,29(7):1563-1568
[64] D. M. Mittleman, R. H. Jacobsen, C. Nussm, T-ray imaging. IEEE J. Sel Top. Quantum Electron, 1996, 2: 679-692.
[65] NASA Marshall Space Flight Center. NASA facts: thermal protection system, NASA Report FS-2004-08-97-M SFC. Huntsville: MSFC, 2004.
[66] H. Zhong, J. Xu, X. Xie et al, Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. , 2005, 5(2): 203-207
[67] D. Zimdars, J. A. Valdmanis, J. S. White et al, Technology and applications of terahertz imaging non-destructive examination: inspection o f space shuttle sprayed on foam insulation. Review of Progress in Quantitative NDE, Golden, 2004: 570-577.
[68] W. P. Winfree, E. I. Madaras, Detection and characterization of flaws in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. 41st AIAA /ASME /SAE /ASEE Joint Propulsion Conference and Exhibit Event, Tucson, USA, 2005: AIAA-2005-3629.
[69] X. Xie, H. Zhong, T. Yuan et al, Terahertz imaging of defects in space shuttle foam insulation. Physics, 2003, 32(9): 583-584.
[70] J. L. Walker, J. D. Richter, Nondestructive evaluation of foam insulation for the external tank return to flight. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, United States, 2006: AIAA 2006-4601.
[71] W. P. Winferee, F. Anastasir, J. P. Seebo. Crack detection in sprayed on foam insulation with pulsed terahertz frequency electromagnetic waves. Review of Progress in Quantitative NDE, Portland, 2006: 148.
[72] N. Karpowicz, H. Zhong, C. Zhang et al, Compact continuous-wave subterahertz system for inspection applications . Appl. Phys. Lett, 2005, 86: 054105.
[73] F. Anastasir, I. Madaras, Terahertz NDE for under paint corrosion detection and evaluation. Review of Progress in Quantitative NDE, Brunswick, USA, 2005: 515-522.
[74] A. Redo-Sanchez, N. Karpowicz, J. Xu et al, Dam age and defect inspection with terahertz waves. 4th International Workshop on Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization, Dartmouth, 2006: 67-78.
[75] J. Beckmann, H. Richter, U. Zscherpel et al, Imaging capability o f terahertz and millimeter-wave instrumentations for NDT of polymer materials. 9th European Conference on NDT, Berlin, Germany, 2006: We.2.8.1.
[76] G. Zhao, H. Sun, Y. Tian et al, Optical system for application of THz spectroscopy and TH z imaging. Proc. of SPIE, 2006, 6047: 60470U.
[77] Z. W. Zhang, Study of pulsed THz time-domain spectroscopic imaging and THz continuous wave imaging. Beijing: Capital Normal University, 2006: 39-47.
[78] Z. Zhang, W. Cui, G. Zhao et al, Data processing methods for terahertz transmitted spectra l imaging Proc. of SPIE, 2006, 6027: 60270K.
[79] C. Zhang, Material inspection using THz and thermal wave. Review of Progress in Quantitative NDE, Portland, USA, 2006: 386-394.
[80] 孫博,姚建銓,基于光學方法的太赫茲輻射源,中國激光,2006,33(10):1349-1359
[81] K. Zhong, J. Yao, D. Xu et al, Enhancement of terahertz wave difference frequency generation based on a compact walk-off compensated KTP OPO, Opt. Commun., 2010, 283: 3520-3524
[82] Y. Geng, X. Tan, X. Li, and J. Yao, Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical paramentric oscillation, Appl. Phys. B, 2010, 99: 181-185
[83] X. L. Cao, Y. Y. Wang, D. G. Xu et al, THz-wave difference frequency generation by phase-matching in GaAs/AlxGa1-xAs asymmetric quantum well, Chin. Phys. B, 2012, 29(1): 014207
[84] Z. Y. Li, J. Q. Yao, D. G. Xu et al, High-power terahertz radiation from surface-emitted THz-wave parametric oscillator, Chin. Phys. B, 2011, 20(5): 054207
[85] Z. Y. Li, J. Q. Yao, D. G. Xu et al, Output enhancement of a THz wave based on a surface-emitted THz-wave parametric oscillator, Chin. Phys. Lett., 2011, 28(11): 114201
[86] P. Liu, D. Xu, H. Jiang et al, Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal, J. Opt. Soc. Am. B, 2012, 29(9): 2425-2430
[87] H. Liu, J. Yao, D. Xu et al, Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals, Opt. Express, 2007, 15(2): 695-703
[88] Y. F. Geng, X. L. Tan, P. Wang et al, Transmission loss and dispersion in plastic terahertz photonic band-gap fibers, Appl. Phys. B, 2008, 91: 333-336
[89] J. Wang, J. Yao, H. Chen et al, Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit, J. Opt. 2011, 13: 055402
[90] J. Li and J. Yao, Controllable terahertz wave attenuator, Microwave Opt. Techn. Lett., 2008, 50(7): 1810-1812
[91] J. Li and J. Yao, Novel optical controllable terahertz wave switch, Opt. Commun., 2008, 281(23): 5697-5700
[92] 姚建銓, 汪靜麗, 鐘凱等, THz 輻射大氣傳輸研究和展望, 光電子?激光, 2010, 21(10): 1582-1588.
[93] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, Proc. SPIE – Photon. Asia, 7854: 785404.
[94] Wang R, Yao JQ, Xu DG et al, The physical theory and propagation model of THz atmospheric propagation, J. Phys.: Conf. Ser., 2011, 276: 012223.
[95] Cui Haixia, Yao Jianquan, Wan Chunming, The study on THz wave propagation feature in atmosphere, J. Phys.: Conf. Ser., 2011, 276: 012225.
[96] P. B. Bing, J. Q. Yao, D. G. Xu et al, High-quality continuous-wave imaging with a 2.53 THz optical pumped terahertz laser and pyroelectric detector, Chin. Phys. Lett., 2010, 27(12): 124209.
相似文獻/References:
[1]邊明明,王世濤,雷利華,等.太赫茲技術及空間應用國內外發展現狀研究[J].空間電子技術,2013,(4):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
BIAN Ming-ming,WANG Shi-tao,LEI Li-hua,et al.Study of the Domestic and Abroad Development Status of THz Technology and its Space Application[J].Space Electronic technology,2013,(2):80.[doi:10.3969/j.issn.1674-7135.2013.04.019]
[2]王曉海.太赫茲雷達技術空間應用與研究進展[J].空間電子技術,2015,(1):7.
Wang Xiaohai.Application in Space and Research Progress of Terahertz Radar Technology[J].Space Electronic technology,2015,(2):7.
備注/Memo
姚建銓,男,1939年1月出生,研究生學歷,中國科學院院士,教授,天津大學激光與光電子研究所所長。研究方向為全固態激光器及非線性光學頻率變換技術,太赫茲技術,物聯網技術等。 鐘凱,男,1984年10月出生,工學博士,天津大學講師。研究方向為全固態激光器及太赫茲技術。 徐德剛,男,1974年2月出生,工學博士,天津大學副教授。研究方向為全固態激光器及太赫茲技術。